Dynamic Equilibrium

...going back and forth... ...at the same time... ...at the same rate...

LeChatelier's Principle

- If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance and re-establishes equilibrium
- The value of K is unchanged
 - Unless T is changed
- Disturbed(?)
 - 1. add/remove a chemical
 - 2. change pressure (gases)
 - 3. change temperature
 - 4. add/remove catalyst

Remember: "what's in your dish" at that moment For the reaction: $aW + bX \rightleftharpoons cY + dZ$ $Q = \frac{[Y]^c [Z]^d}{[W]^a [X]^b}$ At equilibrium, the concentrations stop changing, so Q becomes a constant we call "K" $K = \frac{[Y]^c [Z]^d}{[W]^a [X]^b}$

If $\mathbf{Q} \neq \mathbf{K}$, the system is NOT at equilibrium

- The reaction will proceed in the direction that heads toward being at equilibrium
- Is Q < K?</p>
 - reactants → products makes Q get larger

"proceed forward" or "toward the product side"

- Is **Q > K**?
 - products \rightarrow reactants makes Q get smaller
 - "proceed in reverse" or "toward the reactant side"

LeChatelier's Principle

LeChatelier's Principle

Consider: $A + B \rightleftharpoons C + D$ $K = \frac{[C][D]}{[A][B]}$

How many different sets of values for A, B, C, and D will give the same value for K?

Infinite!

- If you add a chemical, the system tries to "remove" it
- This is done by reacting it away
- This uses up the chemicals on its "side" of the equation and makes more of the chemicals on the other "side"
- Equilibrium is re-established (Q =K), but the individual concentrations are different

- Consider: $A + B \rightleftharpoons C + D$ at EQ
- If you add more A...
- The system tries to remove it by reacting it away, which makes more products

Once equilibrium is re-established...

- [C] ↑
- [D] 1
- [B] ↓

 It is said the equilibrium has "shifted to the right" or "shifted towards the products"

- Consider: $A + B \rightleftharpoons C + D$ at EQ
- If you add more C...
- The system tries to remove it by reacting it away, which makes more reactants

Once equilibrium is re-established...

- [A] ↑
- [B] ↑
- [D] ↓
- It is said the equilibrium has "shifted to the left" or "shifted towards the reactants"

- Consider: $A + B \rightleftharpoons C + D$ at EQ
- If you remove some B...
- The system tries to replace it by reacting to make more of it (and whatever else is on its side of the equation)

Once equilibrium is re-established...

- [A] ↑
- [C] ↓
- [D] ↓
- It is said the equilibrium has "shifted to the left" or "shifted towards the reactants"

- Consider: $A + B \rightleftharpoons C + D$ at EQ
- If you *remove* some D...
- The system tries to replace it by reacting to make more of it (and whatever else is on its side of the equation)

Once equilibrium is re-established...

- [C] ↑
- [A], [B] ↓
- The reaction is driven forward in this case, or towards the products

• Consider: $A + B \rightleftharpoons C + D$

One of the best ways to force a reversible reaction to go all the way towards the product side and <u>not</u> reach equilibrium is to some how "remove" one of the products from "the dish".

Just how does one "remove" a chemical?

- Note: [D] is the *concentration* of D
- But: solids do not have a molarity because they are not dissolved into anything
- So: if one product in an aqueous system is a solid, the solid is called a "precipitate"
- Making a solid "removes" the chemical from the system
 - the precipitate is still "in the dish", but is not a factor in the K calculation!
- This "drives" the reaction forward
- Double replacements

Just how does one "remove" a chemical?

- Same for gases in an open container
- They can bubble out of the mixture (leave the dish)
- Ex: opening a soda bottle

•
$$H_2CO_{3(aq)} \rightleftharpoons H_2O_{(l)} + CO_{2(g)}$$

- Ex: $Mg_{(s)}$ + 2 $HCI_{(aq)} \rightleftharpoons H_{2(g)} + MgCI_{2(aq)}$
 - If the container is open, the reaction just keeps going forward

- Remember Boyle's Law
- Changing the volume of a container of gases changes their pressure as well
 - Inverse relationship
 - If V↓, P↑
 - If V ↑, P↓
- This, in turn, changes their molarity

$$P = \frac{n}{V}RT = MRT$$

- If V↓, then P↑
- The equilibrium will shift to try to make the $\mathsf{P}{\downarrow}$
- How is this done?
- Shift to whichever side has less gas
 - Fewer moles of a gas
 - Smaller coefficients in equation = smaller exponents
 - Less gas means lower pressure
- If there are the same number of moles of gas in the reactants and products, there is no effect

$$\mathsf{Ex:} \mathsf{N}_{2(g)} + \mathsf{3H}_{2(g)} \rightleftharpoons \mathsf{2NH}_{3(g)}$$

- 4 moles of gas in the reactants, 2 in products
- If V↓, P↑...the system will try to make P↓ by shifting to the products (less gas)
- Every time the reaction proceeds forward, 4 moles of gas becomes 2...which means the P↓
- Vice versa if V \uparrow

$$\mathsf{Ex:} \mathsf{N}_{2(g)} + \mathsf{3H}_{2(g)} \rightleftharpoons \mathsf{2NH}_{3(g)}$$

- Note: this effect is only when the change in pressure is caused by changing the volume!
- Changing the pressure by adding another gas not in the reaction has NO EFFECT!

3. Changing the temperature

- Consider : A + B \rightleftharpoons C + D + Heat
- For this system...
 - The forward reaction is exothermic
 - The reverse reaction is endothermic
- Treat heat as if it were a substance being added or removed
- Add heat, equilibrium shifts away from the side with heat [A],[B]↑ [C],[D]↓
- Remove heat, equilibrium shifts toward the side with heat [A],[B]↓ [C],[D][↑]

4. Catalytic effect

- Adding or removing a catalyst has no effect on the value of K
- The activation energy is lowered for the forward <u>and</u> the reverse reaction, and they <u>both</u> speed up by the same amount, so Rate_{FWD} still = Rate_{REV}
- If not at equilibrium, it will be reached quicker if a catalyst is used.

Dynamic Equilibrium

...going back and forth... ...at the same time... ...at the same rate...

LeChatelier's Principle

- If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance and reestablishes equilibrium
 - Disturbed(?)
 - 1. add/remove a chemical
 - 2. change pressure (gases)
 - 3. change temperature
 - 4. add/remove catalyst

Ex: $PCI_{3(g)} + CI_{2(g)} \rightleftharpoons PCI_{5(g)} \Delta H = -88kJ$ How will [CI₂] be changed when EQ is re-established by...

Adding some PCl₃?

 $[Cl_2] \downarrow$

- System will try to react the PCl₃ away
- More products are formed
- To do this, more Cl₂ is consumed

Ex: $PCI_{3(g)} + CI_{2(g)} \rightleftharpoons PCI_{5(g)} \Delta H = -88kJ$ How will [CI₂] be changed when EQ is re-established by...

Adding some PCI₅?

- The system will try to react it away
- More reactants are formed [Cl₂] [↑]

Ex: $PCI_{3(g)} + CI_{2(g)} \rightleftharpoons PCI_{5(g)} \Delta H = -88kJ$ How will [CI₂] be changed when EQ is reestablished by...

Increasing the temperature?

- Heat is added, the system shifts away from the side with heat
- ΔH = negative, so heat is a product
- System shifts towards the reactants
 [Cl₂] [↑]

- Ex: $PCI_{3(g)} + CI_{2(g)} \rightleftharpoons PCI_{5(g)} \Delta H = -88kJ$ How will [CI₂] be changed when EQ is reestablished by...
- Decreasing the volume?
- If V↓, P ↑
- System shifts towards the side with less gas to make P↓
- Product side has fewer moles of gas
 [Cl₂] ↓